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1. INTRODIICTION

Wave drag reduction is one of the important goals of designing a high perfor-

mance aircraft capable of operating in the supersonic regime. Since there are many

design requirements which conflict with one another as far as wave drag reduction is

concerned, an optimization procedure is needed to determine the minimum wave

drag configuration subject to the constraints imposed by these requirements. Until

recently, the procedure relied heavily on experience gained through extensive wind

tunnel testing of various geometries. Such a design procedure, which usually could

not be carried out systematically, was cKpensive and time consuming. However,

the advancec ýf recent years in numerical methods and computer technology have

made feasible systematic optimization procedures using exact numerical methods,

Consequently, a wave drag reduction procedure using the method of characteristics

has been developed which is presented in this report.

The present wave drag reduction procedure makes use of two basic methods:

the Latin Square sampling technique and the Three-Dimensional Method of Character-

istics. The former is used to select sample configurations so efficiently that a

small number of samples -tan well represent the entire family of configurations.

The latter is used to calculate accurately the wave drags of the sampled configura-

tions. Briefly stated, the present approach consists of calculating the wave drag

of a baseline configuration and some variations specified by the Latin Square sampl-

ing technique, determining a functional dependence of the wave drag un these varia-

tion parameters, and minimizing this wave drag function to obtain the configuration

with minimum wave drag. The procedure is general with respect to the number of

geometric parameters (or variables); the higher the number, the larger the required

Latin-Square size. The computer programs developed under this study cover the

most often used 3 x 3 and 5 x 5 Latin Squares.
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The complete wave drag reduction program has been. carried out in two phases.

In the first phase, a procedure was developed for minimizing the wave drag of a

forwaCd fuselage and eanol)y config•,ration as rcported in Reference 1. In the

stvotid phase, the procedure has been expanded to account for the influence of the

wing and wing-body blending on the overall wave drag. In this final report, the

research performed under the wave drag reduction contract is presented. The

phase I work, which was reported in Reference 1, is Included as Appendix A for

ready reference, whereaa the main text of the report presents the phase 11 work

and tou'.hes upon some of the phase I work. A 3 x :3 Latin Square was used in phase

II and a 5 x 5 Latin Square in phase I. The surface fitting method using Latin

Squares as presented in Reference 2 was improved during the phase I study; the

improvement which is presented in Appendix A, is essential for the success of the

optimization procedure (here applied to wave drag reduction). The procedure using

the improved Latin Square surface fitting method has been proven in both phases

through application to the F-4 configuration. For further .validation of the procedure,

it was applied to the von Karman ogive. For given configuration length and base,

the present optimization procedure correctly predicted the von Karman ogive as

the minimum wave drag body.

In this report, the basic approach is given first, which consists of the formu-

lation of the problem and a brief account (f the two basic methods, It is followed by

a discussion of the method of describing the body and the selection of'geometric

variables and their ranges for defining a family of configurations. Then the flow

field calculation and the wave drag equation are presented. Sample results of the

calculated flow fields are given, and calculated wave drag coefficients are tabulated.

These coefficients were used to derive the wave drag equation which expresses the

wave drag as a function of the geometric variables. Once the wave drag equatien is

obtained, the dependence of the wave drag on the geometric variables is established.

2
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A set of figures are given to illustrate some of the characteristics of the wave drag

",quation. This is followed by a prcsentation of the optimization procedure and the

prediction of the minimum wave drag body. Finally, conclusions are drawn and some

recommendations given. The Latin Square technique including the method of con-

struction is presented in Appendix B. A discussion of the general body description

method is given in Appendix C. The Numerical Search Procedure for the minimum

wave drag configuration is presented in Appendix D. The validation of the optimiza-

tion procedure using the von Karr'an ogive is presented in Appendix E.

3
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2. I ()lIR.V IATI()N AND) M\EI('ll)I

"Tlhe' wave drag. (t) a cofi• inui"rat ion is a functif, it , a number of factors. Fo I.

given ftli,rht conditions the wave dra- dtlpends (in how the cnfiguration is shaped.

"Since the shape i)f ;in airc rait, at l east in the initial desig-n phase, is mainly

determined bVy COnsider.;tti(ons other than the wave .rag, it is practical to c,,nsider

the probl)lem otf reduing the wave drag o(o a given baseline cnhiYr'ti)n )y

tbtaining a variation configuration thai satisfies all the desigii c,,nst raints yet has

the least wave drag. Such a baseline configuration could be a new configuration

at a certain stage of devel opne,,ent or it could be an existing airplane that is to be

m•dxified or improved.

In this section, the formulation of the wave drag roduction problem is outlined,

and the two basic methods to be used in this study are introduced.

a. Formulation

The baseline configuration can be described by a set of geometric variables.

A family of configurations including the baseline caxn be generated by assigning

different values to some or a:! of the geometric variables. If the wave drag can be

expressed as a function of these variables, a particular set of values of these

variables that gives the least wave drag can be found by minimizing the function.

This set of values then produces the minimum wave drag configuration.

The key to this problem is how to obtain such at functional axpression for the

wave drag. For the present study, four geometric variables are considered in

defining the family of configurations. If each varibj)le assumes three values, the

evaluation of the partial derivatives with. respect to these four variables for a Taylor-

series type expression would require 81 wave drag calculations. It will be shown

that through Latin Square sampling the present procedure proves useful using only

4.
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10 wave drag calculations. In the present approach, the wave drag coefficient CDW

is first assumed to be of the form

4
C - aItxi 4 t.x x

CDW 0a i ( 1\ x ) a (1)

where x.(i 1, 4) are the geometric variables and a. and a.. are to be determined.
9

The Latin Square sampling technique is used to samnple 9 sets of values of x.

out of the total population of 81 sets. The wave drag coefficients for the F-4 type

baseline and the configurations defined by each of the 9 sets are then calculated

by the Three-Dimensional Method of Characteristics. 3,4 When the 10 calculated

wave drag coefficients CDW and the corresponding ,alues of the geometric

variables "i are substituted into Equation 1, 1 ) linear equations for the 10 un-

knowns ai and aij are obtained. These equations are then solved for the ai and

aij, which are substituted back into Equation 1 to produce the functional expres-

sion for the wave drag in terms of the geometric variables. By minimizing

CDW in Equation 1 subject to a given set of cr ,straints, e. g., a given volume

of the aircraft, the minimum wave drag configuration corresponding to the given

set of constraints is 'etermined. In the present study, a numerical search pro-

cedure is used to lind the mlnim,,_m wave drag configuration (Appendix D).

b. Latin Square Sampling Technique

The Latin Square method, which has mostly been used in agriculture and

biological resear,.:h, is a very efficient sampling technique and is much better than

4 random sampling. For this study a particular type of Latin Square (the orthogonal

squares) suitable for a variety of technical problems2 is adopted. With this type

of Latin Square arrangement, a 3 x 3 square is the correct size for four geometric

variables xi, each taking three values. It is convenient to introduce the reduced



variables zi, which are related to the geometric variable xi through

X x. z. (xi -x )
max min max minl 2 2()

where subscripts max and min denct2 the maximum and minimum values,

respectively. Corresponding to the three values of the geometric variables xi,

the reduced variables z. alwvys asume the three levels of 0, ! 1. The 3x3i

Latin Square arrangement in terms of the levels of the reduced variables and

the cell number is shown in Table 1. * It is seen that in this way, the Latin

Square arrangement remains the same whatever the values of the geometric

variab, es.

c. Three-Dimensional Method of Characteristics

In this study the Three-Dimensional Method of Characteristics 3' 4 is used to

calc.date the wave drag coefficients for the fuselage-wing configurations sampled

by the Latin Square technique. This method has been previously applied to cal-

culate the flow fields over a Aide varty.y of configurations including spherically-

capped three-dimensional bodies and wings 5 , aircraft fuselages and wings at

general angles of attack,6 and slab delta wings and space shuttle wing-body con-

figurations. - Whenever experimental data were available for comparison, good

agreement between theory and experiments was observed. The capability of

treating the canopy, however, was developed during phase I of this study.

Tn a related research program, theThree-Dimensional Method of Characteristics

was further extended and improved to treat realistic aircraft wing-body configura-

tions including wing-body blending. With some modifikation and adaptation, this

Improved method was applied to calculate the flow fields and wave drags of the

variation configurations.

*A discussion of the Latin Square construction is given in Appendix B.



3. DESCRIPTION AND VARIATION OF FUSELAGE-WING CONFIGURATION

Three-dimensional body description requires a great deal of effort which at

times becomes extremely tedious. Basically, two types of description can be

made, analytical and numerical. The latter can describe complicated geometry

accurately, but is cumbersome for preparing input data. The former is much sim-

pier to input and can define a family of configurations based on a few geometric

variables. Hence, analytical description is chosen for the present study.

a. B T)escription

Every configuration has P. number of generating lines, such as the upper

profile, the lower profile, the maximum breadth line, or the wing leading edge.

In the present body description procedure, each generating line is divided into a

number of segments to permit each segment to be described by a conic-section

curve. At each c ross section of the configuration, simple analytic curves, e. g.,

the ellipse or cubic, connect any two adjacent generating lines to form the contour

of the cross section. The configuration is thus described analytically by simple

low-order curves. For a smooth body a unique normal to the surface exists every-

where, and this condition usually requires slope continuity at the junctures between

two contour curves or two segements of a generating line.

The fuselage is located in a right-handed coordinate system where the Y-axis

is aligned with the fuselage axis; the X-axis is spanwise and the Z-axis is up. All

generating lines are represented by a general curve fit of conic sections in several

segments. The coric-section curve takes the form

(Z P Q Y RY2 SY+T 1/2

A straight lhie is a special case with R S T 0. Each curve can

7



be divided into as many se, ,ments as necessary to provide adequate body description.

Each segment must be continuous with the previous segment and with very few

exceptions the slope must be continuous at the junctures to satisfy the requirement

of a unique normal to the surface.

A typcial cross section of thewing-body configuration is shown schematically

in Figure 1. The contour of the cross section begins with a straight line represent-

ing the canopy flat. The canopy contour from points C to 0 is circular but can be

elliptic in general. The upper fuselage is represented by an elliptic curve from

points U. to M. A straight side flat from points M to Ff joins the upper fuselage

to the lower fuselage, which is also represented by an elliptic curve from Ff to L.

A straight line from point L to the centerline describes the bottom flat. For the

description of the wing, straight lines E G and F H represent the upper and lower

surfaces of the wing, respectively. Partial eliipses G I and H I complete the wing

description near the leading edge L. The wing-body blending is effected by circular

arcs 34 and 56 with radii rU and rL, respectively. A further discussion of the

body description method illustrated by the description of the fuselage and canopy

of Phase I is presented in Appendix B.

b. Fuselage and Canopy

The equation of the canopy is given by

-- 1 0 (4)

If it is a circular arc, then (ZO- Zc) 2 (Xc X,) 2 . The equation for the upper

fuselage is

z 12 [ Y X (Y)

z Y Y X M(Y) X U(Y) - = 5

8



The intersection between the canopy and fuselage is faired by a cubic from

points 1 to 2 (Figure 1). The projections Z1Y) and Z2 (Y) of lines 1 and 2 on the

Y-Z plane are given by Equation 3 where the coefficients P, Q, R, S, T are input

quantities. The projections X1 (Y) and X2 (Y) on the X-Y plane are obtained by

solving Equations 4 and 5, respectively.

xi(Y)-xc+(X0  xc) i(- z 0)2 I1/ (6)

x2 (Y) xt + (XI, - xu) - )2 1 (7)

The fairing curve matches the slopes of the ellipses at both end points 1 and 2. The

slopes are obtained by differentiation of Equation 4 and 5

(IX z- I - z G,)(x 0 ) 2 (8)

1 2(Y) ( =X (-2 ZZ)(XX o

M M 12x (z2 XU' Zu 2 M

The cubic equation that satisfies Equations 6 and 8 can be written

2 x - zI z z .3

The coefficients c and d are obtained by applying Equations 7 and 9

c a 3(X 2 -x 1)-(X2 + (z2 -zX) (11)
d =-2(X 2 -X ) + (XV + XI) (Z -Z ) (12)

Equation 10 with c and d given by Equations 11 and 12 is then the cubic equation for

9



the fairing curvo from points 1 to 2. The quantities X1 , X2 , XI and X' are given

by Equations 6 and 7 while XU, XM, XC, X0, ZUT ZM, ZC 0 t zip andZ2

are obtained from Equation 3 where coefficients P, Q, R, S and T are input

quantities.

The lower fuselage is described by an equation similar to Equation 5

2 2

[1;$ f + x]2 [ X..L (Y) - (13)

Z E Zf(Y (X - XL(Y) 2

All flats are given by simple straight-line equations.

c. Wing and Blending

The upper and lower surfaces of the wing are given by straight-line equations

for E G and F H. Near the leading edge I, the partial ellipses G I and H I are

derived as follows. The equation may be written in the form

(x- +a)2 (Z -ZI) 2
I + - =Z 1  1 (14)

a2 b2

where a and b are the axes to be determined. Differentiation of Equation 14 gives

X = XI + a Z - ZI dZ (= ..... + - - = 0(I

a 2  b2 dX

at point G, X XG, Z= Z., and- = A , which is the slope of line E G.. Sub-

stituting these values into Equation 14 and 15 leads to

2 (zr - zT) 2
-:G1- .. + (14a)

a2 b2

XG XIa XGZ (dZ) 0 (a)

b2 2  0X

10



Elimination of b2 froar Equations 14a and 14b yields

2 dZI

C (dXI) G - "9 I(ZG ZI)
adZ = (16)

ZG -zI -2XMI) d=Z

Elimination of a2 from Equations 14a and 14b leads to

( ) Z (X-X, +a) dZ (17)
G2 - ZI)2_Z - "I)(X )G

where a is given by Equation 16. Equation 14 with a and b given by Equations 16 and 17

describes the partial ellipse G I. By changing the subscript G to H, the equation for

the partial ellipse H I is obtained.

The projections of lines passing through E, F, G, H and I on the Z-Y plane

and X-Y plane are input quantities for defining the wing. In order for the partial ellipses

to exist, points G and H must be located within a certain range, which depends on the

relative positions of these five points. When the wing span is very small, It is difficult

to input both projections of lines through G and H such that these points are located within

acceptable ranges. In such cases, the X coordinates of G and H are calculated inside

the program to satisfy the range requirement.

The upper and lower blendings between the fuselage and the wing are described

by circular arcs with radii r U and rL, respectively. When the blending radii rU and

rL are specified by geometric variables (see Section 3d.), points 3 and 5 of Figure 1

can be obtained numerically through an iteration procedure. However, in order to

oitain analytical normals to the blending surface, an analytic expression must be derived.

Hence, the following procedure was used and is illustrated by the upper blending. The

numerically obtained line paessing through point 3 is considered a generating line. The

projection Z3 (1) on the Y - Z plane is expressed in the form of Equation 3, where

11



the coefficients are input quantities. At a given fusalage station, X3 (Y) are obtained

by solving Equation 5.

/2j1/2

x 3y = (xM-xU)I I 21 UZ(18)

The slope of the tangent at point 3 can also be obtained from Equation 5 as

M3 U - ) 2 x 3~-z (19)

Thus, the equation of the tanigent 3 (see Figure 1) at point 3 is given by

Z =C M 3 (X-X 3 ) 3 Z3  (20)

The equation of line E G can be written as

Z = M4 (X -XE) - ZE (21)

where M4  XG _ XE (22)

Intersection P of these two lines is obtained from Equations 20 and 21

Z -z * MX -4M X
Xp 3 M3 M3 4 E

M 4M
3 4!(23)

) M3 Z M4Z3 4 M3 M 4 (X 3 -X
5Z Mt -M 43 3

p N ... . 3 M4

The equation of the line bisecting the angle Z 3PG is given b'

Z M 5 (X-XPX) + Zp i (24)

taj -1 ÷ i-

where M tan r+tan M +tan ) 4a
w M5 2(24a)

12



and M3 is given by Equation 19 and M4 by Equation 22. The intersection between

the bisecting line and the normal at point 3

X-X 3 . M3 (Z- Z3 ) 3 0 (25)

is the center 0 of the arc; hence from Equations 24 and 25

X ±MZ +M.(MX - Z)
X0 = 3 M3M5

(26)

Z, - M5 Xp + M5(X 3 - M3 Z3 )

o1 '- M M

where Xp and Zp are given by Equation 23, M3 by Equation 19 and M by Equation

24a. The equation of the circular arc for the upper blending is thus

(X _ Xo)2 + (Z - Zo2 2 2 2 R2 (27)
(- 0) +( 0 ) =(XO -X3) + (ZO - Z3) RU (

where X0 and Z0 are given by Equation 26. Notice that the radius RU is slightly

different from rU because of slight errors introduced by the ite.ration procedure

in obtaining point 3 and by the fitting of the generating line passing through that point.

d. Geometric Variables and Variations

Four geometric variables were selected to generate a family of fuselage-wing

configurations including the F-4 baseline. As illustrated in Figure 2, these

variables are the horizontal displacement a of the maximum horizontal breadth

line, the lower deck height h (which increases as the lower profile is raised),

and the blending radii r1I and r 2 at F. S. 280 and F. S. 360, respectively. All

configurations generated by these variables have the same canopy as the F-4 and

must satisfy the over-the-side view line limitation. The correspondence between
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the geometric variables and the reduced variables defined in Equation 2, the

ranges of variation ot these geomeiric variables, and the baseline values of these

variables are tabulated in Table 2.

The geometric variables specify the blending radii at two fuselage stations

only. In order to fully describe the blending between the fuselage and wing, a pro-

cedure is needed to provide the blending radius systematically at any given fuselage

station in the blending region. The blending radius distribution as a function of the

fuselage station must satisfy the following conditions:

1. At fuselage stations 220 or 430, the radius is equal to the minimum radius of

the baseline.

2. At F. S. 280 and F. S. ,60, they are equal to r 1 and r 2 , respectively.

3. Between F. S. 280 and F. S. 360, the radius must not overshoot; i. e., it must

not exceed the greater of r 1 and r 2 .

4. When r 1 and r 2 are equal to the minimum radius, the baseline must be

recovered; i.e., the radius must be constant throughout.

5. When either r 1 or r 2 is equal to the mrinimurn radius, the blending radius must

not undershoot anywhere.

Figure 3 illustrates some of the possible radius distributions and serves as a

reference for the foliowing discussion of the procedure. The radius distribution is

given by three cubic interpolation formulas for the three intervals. The slope of the

distribution curve is zero at F. S. 220, 280 and 360 for r = 1.5 and at F. S. 280 and

360 for r = 61.5. At F. S. 280 the slope at r = 46.5 is assumed to be equal to that

of the straight line S . At any other r the slope is obtained from a spline fit of the

slope versus r in such a way that the spline curve passing through these three points

with assumed zero curvature at both end points. The slopes at F. S. 360 are obtained

in an anologous way. Thus, for a given pair of r1 and r2, the radius distribution curve

is determined by three cubic interpolation formulas: the first cubic passes through
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r 1.5 at F. S. 220 with a zero slope and r r at F.S. 280 with a slope given

by the spline fit: the second cubic passes through r r at F. S. 280 with the same

slope as the first cubic and through r = r 2 at F. S. 36;0 with a slope given by the

second spline fit; the third cubic passes through r = r at F. S. 360 with the same

slope as the second cubic and through r = 1. 5 at F.S. 430 with an assumed zero

curvature. The radius distribution curve as composed of these cubics are then

described by conic-section curves for input into the computer programs.

While the lower blending radius could be varied, its range would be very

much limited in the case of the F-4. Therefore, a fixed lower blending is

used to assure a smooth body for the 3DMoC calculations. This blending is

specified by assigning a fixed distance between points 5 and F (see Figure 1).
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4. FLOW FIELD CALCULATION AND WAVE DRAG REDUCTION

Once the geometric variables and their ranges of variation have been selected,

the fuselage-wing con figuration, corresponding to the nine cells of the 3 x 3 Latin

Square can be described. The Three-Dimensional Method of Characteristics to-

gether with a blunt body program for providing the initial data surface can then

be used to calculate the flow fields around and hence wave drag coefficients of

these variation configurations. The wave drag coefficients, in turn, can be used

to determine the coefficients of the wave drag equations (1), from which the

dependence of the wave drag on various geometric variables and the minimum wave

drag body can be obtained.

a. Calculation of Flow Fields

The Three-Dimensional Method of Characteristics program together with

a blunt hody and axisymmetric characteristic program was used to calculate the

flow fields around the baseline F-4 type fuselage-canopy-wing configuration and the

variation configurations corresponding to the cells of the Latin Square. The wave

drag coefficients were conrruted as part of the results to be printed out. Since the

fuselage nose is slightly blunted. the blunt body and axisymmetric characteristic

program was used to provide a completely supersonic initial data surface for the

Three-Dimensional Method of Characteristics program to proceed. The flow-field

calculations were made at Mach 2.5 and zero angle of at:ick. Since the wing leading

edge section is described by an ellipse with a large major-to-minor axes ratio

(Equation 14) the leading edge is theoretically blunt. In order to provide completely

supersonic flow for the characteristics method to calculate, the leading edge must

be subsonic. At Mach 2.5, a subsonic leading edge bns a sweep angle greater than

66.420. Hence a configuration with a leading edge sweep of 680 was chosen, which

0
is greater than F-4's leading edge sweep of a-bout 51 . Fortunately, the main geo-

metric change that is expected to yield appreciable erag reduction is the wing-body
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blending which does not extend to the reglflfn near the leading edge. Therefore,

modified wings with considerable increases in the wing sweep can be used for the

present wave drag reduction study without appreciably affecting the results.

As an example of the flow fields calculated by using the Three-Dimensional

Method of Characteristics, the flow over the F-4 type baseline at Mach 2. 5 and zero

angle of attack is presented here. Figure 4 shows the top view of the configura-

tion, the upper and lower centerline pressure distributions and the pressure along

the wing leading edge. Along the upper centerline of the configuration, the pressure

rises sharply as the flow hits the canopy-fuselage juncture. This signifies the

existence of an embedded shock wave created by the canopy. As the flow spreads

over the canopy flat section, the pressure drops although the canopy profile is

almost straight. A further drop of pressure is experienced as the canopy profile

curves back after the flat section. It recovers to near free-stream pressure as the

w ing leading edge pressure rises. Along the lower centerline the C first drops
p

to a negative value due to further expansion. It recovers somewhat and eventually

comes close to zero, consistent with the condition of zero angle of attack. The

wing begins with a high sweep, which decreases to a constant value of 68° near F.S.

190. Correspondingly, the slightly higher than free-stream pressure is observed at

the beginning of the wing. Because of the wing-body interaction, almost immediately

the wing leading edge pressure drops and does not recover ;,ntil after F. S. 200 when

the wing sweep drops to 680 and the larger wing span lessens the interaction. A

cross section of the baseline configuratiorh at F. S. 430 is shown in Figure 5; the

wing has become very thin anc! it is thicker near the leading Adge than near the root.

The front view of the baseline configuration is shown in Figure 6.

Of all the variation configurations, configuration 6 has the maximum wing-body

blending. The front view of this configuration is shown in Figure 7. A cross -

sectional view at F. S. 350 is shown in Figure 8 together with surface pressure
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dist 'ibutio'n. At this fusehtge station,i the blending is nearly maximum, as comparedi

\with the baseliu¢• cross stcti,,n sh,,wn by a dashed line. At F. S. :35•* the blending

radius is still incrceLsiteg; howcvci, the t'ate of incr •tase "has dr,,ppedx to, a v'ery

small value. That meanms e~xpansion ha's sct in upstream of F. S. 350, re.sulting

in a negative C in the blending reg•ion as shown.
p

b. Wave Dr'ag Equation

As shown in Equation (1), for a gien Mach number and angle of attack, the wave

drag coefficient CD is assumed to be a quadrie function of the four' chosen geometric

variables x 1 , ...... x 4 with the coefficients ai and ai. to be determined. The

reduced variables iwhich take the levels of 0, and •: 1 according to the Latin Squ ire

a:'r.•ngement shown in Table 1, assign corresponding values to the geometric

variables xi. For instance, according to the first cell, zI and z4are assigned levul -1,

which corresponds to the minimum values of the geometric variables xIand x4 while

z2is assigned level 1, which corresponds to the maximum value of x2 , and z3is

assigned level 0 corresponding to) the mean value of the geometric variable x. Thus

the first cell specifies a set of values for the geometric wvariables which in turn

defines a configuration whose wave drag coefficient can then be calculated by the

method of characteristics orogram. In this w~y, each cell leaids to one equation for

the determination of the coefficients of the wave drag equation.

The wave drag coefficients of the baseline and the 9 variation configurations

are tabuiated in Table 3. These will be used to deterinhe the wave drag equation



It should be noted that in the original Latin Square surface fitting method

presented in Reference 2, two of the geometric variables have only linear terms

resulting in only 8 coefficients b. and b for 10 equations and these equations are

solved by a least square procedure. However, while the requirement of 2 linear

variables can be relaxed (see Appendix A) in the case of 5 x 5 Latin Sqt ires, this

requirement does not seem to apply to the case of 3 x 3 Latin Squares. In fact, in

the present case, these 10 equations were used to solve for the set of 10 unknowns
•) 2

b. and b.j that included z and z2 in addition to the origiz.al 8 coefficients. The
1 i 1 4

resulting coefficients of the wave drag equation are tabulated in Table 4.

c. Variation of Wave Drag with Geometric Variables

It is instructive as well as useful to represent the wave drag equation

graphically. However, since the wave drag depends on four geometric variables,

it is only possible to show the variation of the wave drag coefficient with respect

to two of the variables while keeping the other two variables constant, for instance,

at the baseline values. Such graphs give some "feel" of the wave drag equation and

may offer some insight about the wave drag reduction problem. Figures 9 to 20

depict the nature of the wave drag equatio, of ten terms with coefficients given in

Table 4. These graphs were plotted on a Tektronix equipment. Each graph has

five curves that correspond to five values of the geometric variable shown at the

top of the graph: these values equally divide the range which is shown in Table 2.

Figures 9 to 11 show the variation of the wave drag coefficient with respect

to the width a, which is normalized with respect to the baseline width. As might

be expected, the wave drag coefficient ineram.es with the width of the configuration.

The curve3 are fairly straight, indicating that the wave drag is nearly proportional

to the width of the configuration, other conditions being equal. In general,

Ir17 inc rease of the width increases the wave drag by 0. 35',. rhe dependence of the

1 9



Best Available Copy

wave drag coefficient on the other variables can be seen to be far from linear

since the distances between the curves are quite different from one another. The

dependence of the wave drag coefficient on the lower dock hieght h is shown in

Figures 12 to 14. Since the lower profile rises with increasing values of h, the

wave drag coefficient decreases with h. It is interesting to note that the wave drag

attains a minimum at about h - 1.2, which represents a slight rise of the lower

profile from h = 0. All the curves are nearly flat near h = 0, suggesting that a

slight change of the position of the lower profile has little effect on the wave drag.

Note that the curves in any of the figures from Figures 9 to 14 are parallel to

one another, because the 10-term wave drag equation contains no cross terms

of these variables except r 1 r2, which represents the interaction between the two

blending radii r 1 and r 2 . When more configurations are included during the

progress of the optimization procedure, other cross terms could be included,

as explained in Appendix A. However, the interaction between these other vari-

ables are expected to be small. This observation was arrived heuristically but

has been verified by the ability oi Equation 28 to accurately predict the minimum

wave drag body as will be shown. The next three figures 15 to 17 show the varia-

tion of the wave drag coefficient with r1 , the blending radius at F. S. 280, for

different values of one of the other three variables while the remaining two take the

baseline values. Similarly, the variation of the wave drag coefficient with r2' the

other blending radius at F.S. 360, arce shown in Figures 18 to 20. Although all

these figures show a general inc rease of the wave drag coefficient with the blend-

ing radius, there is a definite trend for the curves to attain a minimum within the

ranges. Most minima occur at the lower side of the radius scale: sometimes it may

even reach 15 inches as shown in Figure 20. The occurence of these minima is

significant because this shows that the volume of a wing-body coaliguration can be

increased by using wing-body blending without increasing the wave drag and that

when the blending Is done p)roperly, the volume can be increased with an accompany-
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ing reduction in the wave drag. Some interaction between r and r 9 is evident in

Figures 17 and 20, as indicated by the cross over of two or more curves.

d. •ptimization and Minimum Wave Drag Body

The wave drag equation can now be investigated to reduce the wave drag.

In the process of determining the minimum wave drag configuration, certain

geometric constraints, such as minimum fuselage width or a given lower deck

height, must be satisfied. For each set of geometric constraints, there mists a

minimum wave drag configura.tion. In this section, the optimization procedure and

some minimum wave drag configurations are presented and discussed. During

phase I study, a technique was developed (see Appendix A) that greatly improves

the original Latin Square surface fitting method of Reference 2, especially for

5 x 5 or larger Latin Squares. The improved optimization procedure using the

improved Latin Square surface fitting method is verified in Appendix F.

The simplest and surest way to find the minimum wave drag configuration

subject to a given set of geometric constraints is to use Equation 13 to calculate

the wave drag coeffici,•.,, for all allowable sets of levels of the variables and pick

the set that gives the least wave drag. The optimization procedure consists of

the following steps. *

1. Make a numerical search trough the ranges of all geometric variables,

using the wave drag equation to calculate the wave drag coefficients for

those sets of levels that satisfy the constraints.

2. Identify the set of levels ot the variables that yields the least wave drag.

3. Prepare body description ihpgut data for the minimum wave drag configura-

tion.

4. Use the Three-,Dimensional Method of Characteristics program to verify

Theuerical S~eaSrch Procedure for 5x5 Latin Squares is presented in Appendix C:
It holds true for 3x3 Latin Squares when the space dimension is lowered from 6 to 4.
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the prediction of the wave drag equation.

5. If the difference between the predicted and calculated wave drag coef-

ficients exceeds a certain criterion, the calculated wave drag coefficient

provides an additional equation for the least square fit, and the optimi-

zation procedure is repeated.

For the wave drag reduction problem of the fuselage-wing configuration,

as we are concerned with in phase II, two types of constraints are considered. The

first corresponds to setting one or more of the variables to a desired value. The

second corresponds to assigning a fixed volume to the configuration, for instance,

a certain percentage of the baseline volume. When two of the variables are set

to the baseline values, any of the figures from Figures 12 to 20 provides one or

more minimum wave drag bodies. In this respect these figures can be quite useful.

When no constraints other than the range limitations are imposed, the wave drag

equation predicts a minimum wvave drag body that corresponds to 90' of the base-

line width, a raise of the lower profile by 1. 2 inches and a blending radius of 3.52

inches at F. S. 280 and 7. 65 inches at F. S. 360 (Figure 21). With this configuration,

a reduction of wave drag by 4. 54c is predicted. The body description input data

for this minimum wave drag configuration was then prepared for the verification

run by the Three-Dimensional method of Characteristics program. The results

showed a 4. 357l reduction of wave drag. The difference between the predicted and

calculated wave drag reductions is within the accuracy of the procedure: therefol'e,

the validity of the 10-term wave drag equation is established. Figure 22 shows the

minimum wave drag configurations for various volume constraints. The percent

of wave drag increase was plotted against increasing volumes expressed as percent

of the baseline volume. The values of the geometric var-iables that define the

minimum wave drag configurations are also plotted. It is seen that a certain amount

of wing-body blending is present for all minimum wave drag configurations. For
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a given volume, the forward fuselage becomes more sicnder to yield lower wave

drag, and the lost volume is compensated for by the volume gained through wing-body

blending.

e. Summary of Wave Drag Reduction Procedure

The present procedure can be used to improve an existing aircraft or to aid

in the design of a new one. In the case of improvement, the existing aircraft

naturally serves as the baselire. In the case of new design, the preliminary con-

figuration, which is usually obtained through considerations other than the wave

drag, can serve as the baseline for wave drag reduction.

The next step is to select either the 5 x 5 Latin Square for the forward fuselage

or the 3 x 3 Latin Square for the blended wing configuration and to describe the base-

line and variation configurations using the body description method presented in

Appendix C. The sections on the description and variation of configuration In Appendix

A or the main text should be consulted in producing the body description. This step

is time-consuming but must be done carefully to assure success in wave drag cal-

culations by the method of characteristics.

Input cards are then prepared according to the instructions given in part 1 and

2 of the user's manual (volume II of this report) and fed to the Initial Value Surface

Program and the Three-Dimensional Method of Characteristics Program for wave

drag calculations. Care needs to be taken in the preparation of these cards, for if

the calculation falls to proceed further the first item to check is the correctness of

the input cards.

After the wave drag coefficients have been calculated by the Three-Dimensional

Method of Characteristics Program, the Surface Fit and Minimum Search Progiram

can be used to define the least wave drag configuration for a given set of constraints

as explained in part 3 of the user's manual. The program can be used as one of
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the steps of a design procedure by providing the minimum wave drag body corre-

sponding to const ,aints imposed by other considerations. Or the program can be

applied to generate a set of charts for predicting minimum wave drag bodies

subject to specifi.id constraints. It should be noted that these charts are valid in

some ranges of geometric variables near the baseline. The entire procedure needs

to be redone for a different baseline configuration.
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6. CONC LUSIONS

With regard to the wave drag reduction program, the following remarks

and coiclusions can be made.

a. The present optimization procedure developed in the phase I study is useful

and versatile. It can be used for other optimization purposes.

b. Together with the Three-Dimensional Method of Characteristics, the procedure

can be used to obtain the minimum wave drag configuration for designing new

airplanes or modifying existing ones.

c. The optimization procedure has been verified through applications to the F-4

forward fuselage using a 5 x 5 Latin Square and to an F-4 type fuselage-wing

configuration using a 3 x 3 Latin Square. The procedure has also proven itself

by correctly predicting the von Karman ogive as the minimum wave drag body

for a given configuration length and base.

d. Within the ranges of variation of the chosen geometric variables, the following

rule-of-thumb precentage reductions of the wave drag are obtained. In the

case of the F-4 fuselage, for• every inch the nose is lengthened, the wave drag

is reduced by slightly over one percent, and for every percent the fuselage

volume is decreased, the wave drag is reduced by about three quarters of a per-

cent. In the case of the F-4 type fuselsage-wing configuration, the wave drag is

reduced by about half a percent for each percent the blended-wing configuration

is narrowed.

e. The present application to wave drag reduction is limited only in the capability

of the wave drag computational techniques. First, a completely supersonic flow

field is required for the characteristics method to be applicable. For a given

configuration, this requirement sets a lower limit on the free-stream Mach

number. Secondly, the computer program at the present stage of development

requires that all corners and edges be faired with smooth curves to yield a
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unique surface normal everywhere on the configuration.

f. At free-stream Mach nunbers below the lower limit stated in e., subsonic

regions would occur at the fuselage-canopy juncture of the configuration under

consideration. Further studies on calculations of local subsonic regions are

needed to provide methods for supplementing W-day's wave drag computational

techniques at lower free-stream Mach numbers.
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TABLE 1. Latin Square Arrangement

CELL Code:
S2 z

® -1- ®o -1 1, _1

0 0

1 0 o -1 1 0 -1

0 1
0 1 1 -1I 0

TABLE 2. Variables, Ranges, atid Baveline Values

Reduced Geometric
Variables Variables Ranges of xi Baseline Values

zixiC •x z. '
min . 1

z a 0.9 -..-5 -0.2 1.0
z2 r 1.5 36.50 -1.0 1.5
z3 r2 14 5 61.50 -1.0 1.5
z4 h 3.0 -6.0 -0,333 0.0
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TABLE 3. Wave Drag Coefficients CDW

(Base on Wing Area of 530 Sq. Ft.)

10.0104602 0.0116525 0.0107868

0.0094555 0.0104013 0.0128320

0.0116629 0.0114297 0.0114309

Baseline Value CDW = 0.00979359

TABLE 4. Coefficients of Wave Drag Equation

b = 0.0104013
0

Values of bi x 104

1 2 3 4

bi x 104 5.7851670 3.638333 7.459000 2.706667

Values of bij x 104

1 2 3 4

1 0.6171822

2 2. 598000 -1. 181682

3 5.391000

4 2.227318
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APPENDIX A

WAVE DRAG REDUCTION FOR FORWAP' FUSELAGES

1. INTRODUCTION

The complete wave drag reduction program has been carried out in two phases.

i-i the first phase, a procedure was developed for minimizing the wave drag of a

forward fuselage and canopy configuration. In the second phase, the procedure was

expanded to account for the influence of the wing and wing-body blending on the over-

all wave drag. In this appendix, the research performed in the first phase of the

program is presented. The basic approach is given first, which consists of the for-

mulation of the problem and a brief account of the two basic methods. It is followed

by a discussion of the method of describing the body and the selection of geometric

variables and their ranges for defining a family of configurations. Then the flow field

calculation and the wave drag equation are presented. Sample results of the calculated

flow fields are given, and calculated wave drag coefficients are tabulated. These

coefficients were used to derive the wave drag equation which expresses the wave

drag as a function of the geometric variables. A new concept which enables the wave

drag equation to "learn" from experience to improve its performance is also pre-

sented. This concept proved very useful in achieving successful results during the

Phase I work and can be applied to improve other optimization procedures using Latin

Square sampling. Then the wave drag reduction procedure and the types of geometric

constraints imposed by design requirements considered in the procedure are pre-

sented, followed by the discussion of the wave drag equation and the new concept for

improvement. Various aspects of the wave drag reduction procedure are demon-

strated using the F-4 fuselage aa the baseline; the results are presented and dis-

cussed. Some characteristics of the wave drag equation are plotted, and concluding

remarks are made for the Phase I work.
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2. .\IPIR(OAC1I

In this section the formulation of the wave drag reduction problem is outlined,

and the two basic methods to be used in this study are introduced.

a. Formulation

The baseline configuration can be described by a set of geometric variables. A

family of configurations including the baseline can be generated by assigning different

values to some or all of the geometric variables. If the wave drag can be expressed

as a function of these variables, a particular set of values of these variables that gives

the least wave drag can be found by minimizing the function. This set of values then

produces the minimum wave drag configuration.

The key to this problem is how to obtain such a functional expression for the

wave drag. In this study, six geometric variables are considered in defining the family

of configurations. If each variable assumes five values, the evaluation of the partial

derivatives with respect to these six variables for a Taylor-series type expression

would require 56 or 15,625 wave drag calculations. This is obviously not feasible. In

the present approach the wave drag coefficient CDW is first assumed to l, of the form

6 5 5
C w=ao + ' a.x4 a..x.x. (1)DW o a 1x E 1 1 3()

i:~1j=i i--2

where xi (i = 1, 6) are the geometric variables and a and aij arc to be determined.

The Latin Square sampling techniquel is used to sample 25 sets of values of x. out of

the total population of 15, 625 sets. The wave drag coefficients for the configurations

defined by each of the 25 sets are then calculated by the Three- Dimensional Method of

Characteristics. 2,3. When the 25 calculated wave drag coefficients C and the

corres, *ding values of the geometric variables xI are substituted into Eq. (1), 25

linear equations for the 17 unknowns ai and a are obtained. A least-squares procedure

is used to solve these equations for the a. and a j, which are then substituted back into
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Eq. (1) to produce the functional expression for the wave drag in terms of the

geometric variables. By minimizing CDW in Eq. (1) subject to a given set of con-

straints, e.g., a given length and width of the fuselage, the minimum wave drag con-

figuration corresponding to the given set of constraints is determined. In the present

study, a numerical search procedure is used to find the minimum wave drag configura-

tion (Appendix D).

b. Latin Square Sampling Technique

The Latin Square method, which has mostly been used in agriculture and

biological research, is a very efficient sampling technique and is much better than

random sampling. For this study a particular type of Latin Square (the orthogonal

squares) suitable for a variety of technical problems is adopted. With this type of

Latin Square arrangement, a 5X5 square is the correct size for six geometric

variables xi, each taking five values. It is convenient to introduce the reduced

variables zi, which are related to the geometric variable x through

X +x. zi-imn

XImax 2 min + xmax - x 1 ) (2)
2-- 4

where subscripts max and min denote the maximum and minimum values, respectively.

Corresponding to the five values of the geometric variables xP, the reduced variables

zi always assume the five levels of 0, i1, -2. The 5.<5 Latin Square arrangement in

terms of the levels of the reduced variables is shown in Table 1. It is seen that in this

way the Latin Square arrangement remains the same whatever the values of the

geometric variables. At first glance, it appears that the roles of z1 and z6 are

unique since their levels are arranged regularly in Table 1 and their nonlinear termns

are excluded from Eq. (1). This is true for the conventional approach. However, it is

shown in Appendix B that by rearranging Table I any pair of the reduced variables can

have their levels arranged regularly as z1 and z 6 , and it will be shown later in this

A discussion of the Latin Square construction is given in Appendix B.



TABLE 1. A 5x5 LATIN SQUARE ARRANGEMENT

CELL CODE

-2 -2 -1 -2 0 -2 1 -2 2 -2

1 0 2 1 -2 2 -1 -2 0 -1

-1 2 0 -2 1 -1 2 0 -2 1
-1 - 0 -1 -1

-2 -1 -1 -1 0 -1 1 -1 2 -1

2 -1 -2 0 -1 1 0 2 1 -2

1 0 2 1 -2 2 -1 -2 0 -1

-2 0 -1 0 0 0 1 0 2 0

-2 -2 -1 -1 0 0 1 1 2 2

-2 -2 -1 -1 0 0 1 1 2 2

-2 1 -1 1 0 1 1 1 2 1

-1 2 0 -2 1 -1 2 0 -2 1

0 1 1 2 2 -2 -2 -1 -1 0

-2 2 -1 2 0 2 1 2 2 2

0 1 1 2 2 -2 -2 -1 -1 0

2 -1 -2 0 -1 1 0 2 1 -2
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appendix that some or all nonlinear terms of z1 and z6 can be included in the wave drag

equation.

c. Three-Dimensional Method of Characteristics

In this study the Three-Dimensional Method of Characteristics 2 ',3 is used to

calculate the wave drag coefficients for the fuselage-canopy configurations sampled

by the Latin Square technique.
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3. DESCRIPTION AND VARIATION OF FOR\VAR[D FUSELAGE

Three-dimensional body description requires a great deal of effort which at

times becomes extremely tedious. Basically, two types of description can be made,

analytical and numerical. The latter can describe complicated geometry accurately,

but is cumbersome for preparing input data. The former is much simpler to input and

can define a family of configurations based on a few geometric variables. Hence,

analytical description is chosen for the present study.

a. Body Description

Every configuration has a number of generating lines, such as the upper profile,

the lower profile, the maximum breadth line, or the wing leading edge. In the present

body description procedure, each generating line is divided into a number of segments

to permit each segment to be described by a conic-section curve. At each cross sec-

tion of the configuration, simple analytic curves, e.g., the ellipse or cubic, connect

any two adjacent generating lines to form the contour of the cross section. The con-

figuration is thus described analytically by simple low-order curves. For a smooth

body a unique normal to the surface exists everywhere, and this condition usually

requires slope continuity at the junctures between two contour curves or two segments

of a generating line.

The fuselage is located in a right-handed coordinate system where the Y-axis is

aligned with the fuselage axis; the X-axis is spanwise and the Z-axis is up. A schematic

of the fuselage-canopy configuration is shown in Figurc . ana , typical cross section,

in Figure 2. All generating lines are represented by a g, ;ral curve fit of conic sec-

tions in several segments. The conic-section curves 4a f."m

= P.Y + Q. + 2 + (3)

where j = 1, 5. A straight line is a special case with R S = T = 0. Each curve can

be divided into as many segments as necessary to provide adequate body description.
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Each segment must be continuous with the previous segment and with very few excep-

tions the slope must he continuous at the junctures to satisfy the requirement of a

unicque normal to the surface. Unlike others, lirne G is not a true generating line. It

is actually a shape factor which expresses the distance to a t. "ent line as a function of

Y and is discussed in Section 3b. For lines 7 and 8, only Z7 and Z are fitted by conic

section curves while X 7 and X8 are given by Eq. (10a) in Section 3c.

As shown in Figure 2, the contour of the cross section begins with a straight

line representing the canopy flat. The canopy contour from points 4 to 5 is circular

but can be elliptic in general. The upper fuselage is represented by an elliptic curve

from points 1 to 2. The lower fuselage is represented by a general conic-section

cuve from points 2 to 3; the bottom flat, by a straight line from point 3 to the center-

line. The intersection between the canopy and the fuselage is faired by a cubic from

points 7 to 8. The derivation of the cubic equation is presented in Section 3c. The

equation for the canopy is given by

2 2
S(Y)-Z5  ) X-X 4 (Y),

41 Y X5 (Y)X (Yx 41

If it is a circular arc, then (Z4 - Z5 ) = (X5 - X4 )2. The equation for the upper

fuselage is
2 2

~ -Z(Y ]+ [ - 1 Y 1 -1 =0 (5)
Z -(Y)- Z 7Y) x (Y)- X (Y)

b. Shape Factor

Referring to Figure 2, the contour curve from points 2 to 3 has a zero slope at

point 3 and the slope approaches infinity at point 2. As in aircraft lofting practice.

the shape of this contour curve is determined by specifying the distance from the origin

to one of its tangent lines that makes a 45' angle with the x-axis. Hence, this distance, 'C

which is designated by b in the following derivation of the equation for the contour

curve, may be regarded as a shape factor for this curve.
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This equation for the 450 tangent line is

x= z-V b

which, when the origin is translated to point 3, becomes

X'= Z' + H (6)

where ZV = Z-Z 3, X' = X-X 3 , and H = Z3 -X 3 -V/2 b. In the new coordinate system,

the general quadric equation, satisfying the conditions Z' (X' 2 ) Z (' 2,

0, and(ddZ' 0, reduces to
.(ddZ.'/2 \dX' 3

K( Z' XI -, xZ')2 + Z' x 7

which represents a family of curves with K as a parameter. To determine K,

".Eq. (6) is substituted into Eq. (7) to yield a quadratic equation in the form

AZ' 2 + BZ' +C-0 (8)

and the condition for Eq. (6) to be a tangent line is that Eq. (8) should have a double

root; i.e., B2 - 4AC - 0, which leads to

(H-Xj
2

4HKZj X (H+ Zj - X'2 )

Equation (7) with K given by Eq. (9) is the equation for the contour curve from

points 2 to 3. The range of variation of this curve obtainable by applying this equation

is illustrated in Figure 3, where a family of conic-section curves is given for dif-

ferent values of b. By increasing the distance b, the curve is seen to vary from

almost a straight line to a sharply bending curve approaching the two sides of a right

triangle.

c. Fairing Curve

The interseetion between the canopy and fuselage is faired by a cubic from points

7 to 8 (Figure 2). The projections Z7 (Y) and Z8 (Y) of lines 7 and 8 on the Y-Z plane

are given by Eq. (3) where the coefficients P, Q, R, S, T are input quantities. The
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projections X7 (Y) and X Y) on the X-Y plane are obtained by solving Eqs (4) and (5),

respectively.

X 7 'K x4 + ( -a x 4 ) [ 1 Z 7 -5 2 1 1/2

4 5 J((lOa)
211/2

X 8 (Y)=XI +(X.-X 1) 1 (Z Z2) /

The fairing curve matches the slopes of the ellhpses at both end points 7 and 8. The

slopes are obtained by differentiation of Eqs. (4) and (5)

X, Y) Il ( 77. X - ý
(lOb)

The cubic equation that satisfies the first conditions of Eqs. (1Oa) and (lOb) can be

written

X " X7 4 X' 7 (Z- Z7 ) +c (\)d Z7 +dd \78 (11)

The coefficients c and d are obtained by applying the last conditions of Eqs. (10a) and

(IOb)

C (x8 -X7 )- (X; + 2Y) (Z8 z7 ) (12)

d =-2(XQ-X 7 ) + (X4 + X+ )I7s-zY

Equation (11) with c and d given by Eq. (12) is then the cubic equation for the fairing

curve from points 7 to 8. The quantities X7 , X8 0, X' 7 and X'V arc given by Eqs. (0a)

and (10b)'while X4, X ', X l X,. ZI, Z2, Z.I, Z5, Z7 and Z8 are obtained from Eq.

(3) where coefficients P) Q It, S•. and T. are input quantities.

All
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d. Geometric Variables and Ranges of Variation

Six geometric variables were selected to generate a family of forvard fuselages

including the F--4 baseline. As illustrated in Figure 4, these variables are the length

; of the fuselage nose, the horizontal displacement a and vertical displacement a' of

the maximum horizontal breadth line. the shape factor b, the lower deck height, h,

and the bottom flat width f. As discussed previously the shape factor b is the distance

from the origin to the 45L tangent line which is tangent to a contour curve of the lower

fuselage cross section. All configurations generated by these variables havethe same

canopy as the F-4 and must satisfy the over-the-nose and over-the-side view line

limitations.

The correspondence between the geometric variables and the reduced variables

defined in Eq. (2), the ranges of variation of these geometric variables, and the base-

line values of these variables are tabulated in Table 2. The variety of configurations

that can be obtained using these geometric variables within their ranges of variation

Is illustrated in Figures 5 and 6. Figure 5 shows the top and side views of the con-

figurations. The solid lines show the baseline configuration of the F-4. ..The.dash-dot

lines describe two extreme variations of the fuselage shape. The variation of the fuse-

lage shape ahead of the canopy has to satisfy the over-the-noseview constraint, and

the width of the fuselage is subject to the over-the-side view constraint. The radar

installation Imposes a minimum requirement for the width and limits the amount by

which the lower profile can be moved upward. Notice that the figuire shows only two

extreme examples of the variations. The long nose version can be combined with a

wide fuselage or the short nose version can be combined with a slender fuselage to

yield other intermediate confiivrations. Figure 1; demonstrates the type of configura-

tion variation that can be achieved through the chosen variables. Cross-sectional

views at the three fuselage stations indicated in Figure 5 are shbwn ili Figure 6. The

solid lines describe the baseline configuration while tile dashed lines describe two

extreme variationw o( the cross sections. The circle at F. S. 50, which represents
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TABLE 2. VARIABLES, RANGES, AND BASELINE VALUES

Reduced Geometric Ranges of x. Baseline Values
Variables Variables Ranges 1 xiBaein aleK. xXi. x. z. x.

1min m"max 1 1

11

z 1 84 104 -1.38 87.1

z2 b -2/3 2/3 0 *

z3 f 0. 1.5 2/3 1.

z4 h 5. -10. -2/3 0.

z 5 a' 0.6 1.2 2/3 1.

z a 0.9 1.15 .0.4 1.

*Baseline values for x. vary from station to station. x. is taken
,i Im I ni

to be the local baseline value minus 2/3 of the difference between the

baseline value and the local minimum value and x. is taken to be theI
maxlocal baseline value plus 2/3 of the difference between the baseline value

and the local maximum value.
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the minimum area for the radar, limits the amount by which the maximum breadth line

can move in or the lower profile can move up. The over--the-side view line governs

how far the maximum breadth line can move out and up. Again only two extreme

examples are given. Other configurations can be easily constructed. The important

variable for the cross-sectional variation is the shape factor b which drastically alters

the shape of the lower fuselage between the maximum breadth line and the lower sur-

face flat.

It should be fairly obvious that the choice of geometric variables and their ranges

of variation are somewhat arbitrary. The present selection allows a fairly wide range

of variation of configurations which are similar to the baseline configuration. Other

selections can be made such that the range of variation is more limited or the family

of configurations is less similar to the baseline.

Some guidelines for the selection of geometric variables and their ranges can

be given.

(1) The two linear variables should be selected if their effects on the wave drag

are small or if they affect the wave drag nearly linearly and their interac-

tions with other variables are very small. The interaction between two

variables is the influence of either variable on the wave drag contribution

of the other. Nonlinear effects, however, can be included through a new

concept which will be discussed in Section 4c.

(2) The four remaining nonlinear variables should be selected in such a way

that their interactions with each other are small or nearly linear.

(3) The range of each variable should be as small as necessary, just wide

enough to serve the particular purpose.

(4) In general Lhe nonlinear variables and their ranges should be selected in

such a way that their influences on the wave drag are of the same order of

magnitude.
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4. FLOW lH1E:LD CALCULATION AND WAVE DRAG EQUATION

vhe wave drag coefficients of the baseline configuration and the 25 configurations

picked by the Latin Square technique are calculated by applying the Three-Dimensio-ti•

Method of Characteristics. The resulting wave drag coefficients are then u, 'o ob-

tain the wave drag equation.

a. F'low Over F-4 Baseline

As an example of the flow fields calculated by using the Three-Dimensional

Method of Characteristics, the flu.: over the F--I baseline at Mach 2.5 and zero angle

of attack is presented here. F.igure 7 shows the top and front views of the configura-

tion, four cross-sectional views, and the upper and lower centerline pressure distri-

butions. Along the upper centerline of the con figuration. the pressure rises sharply

as the flow hits the canopy-fuselage juncture. This signifies the existence of an

embedded shock wave created by the canopy. At the pressure peak the local Mach

number'drops to 1. 17. As the flow spreads over the canopy flat section, the pressure

drops although the canopy profile is almost straight. A sudden drop of pressure is

experienced as the canopy profile curves back after the flat section. Along the lower

centerline the Cp first drops to a negative value due to further expansion. It recovers

somewhat and eventually comes close to zero, consistent with the condition of zero

angle of attack.

Figure S shows polar plots of the pressure distributions at four fuselage stations

with cross sections shown in Figure 7. Since the forward fuselage ahead of the canopy

droops somewhat, the pressure is higher on the upper fuselage than that on the lower

fuselage at zero angle of attack. At F.S. :35.4 the C incr'ases monotonically from a
p

slightly negative value at the bottom to a positive value at the top. A noticeable

'prcssure rise can be seen at F.,S. 85.3 near the fuselage-canopy juncture. A similar

pressure peak is visible at F.S. 145, at which C has become negative except near

p
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the bottom flat. In general the flow continues to expand downstream. By F. S. 203 the

pressure everywhere has become slightly less than the free-stream pressure, and the

variation of Cp is small and nearly monotonic.

b. Calculation of Wave Drag Coefficients

As shown in Eq. (1), for a given Mach number and angle of attack, the wave

drag coefficient CDwis assumed to be a quadric function of the six chosen geometric

variables x . . . . x6 with the coefficients a i and aij to be determined. The reduced

variables zi. which take the levels of 0, t1, ;2 according to the Latin Square arrange-

ment shown in Table 1, assign corresponding values to the geometric variables x..

For instance, according to the first cell, z1 and z6 are assigned level -2, which cor-

responds to the minimum values of the geometric variables x1 and x6 while z4 is

assigned level 2, which corresponds to the maximum value of x4' The other three

reduced variables are assigned levels corresponding to intermediate values of the

geometric variables. Thus the first cell specifies a set of values for the geometric

variables which in turn defines a configuration whose wave drag coefficient can then

be calculated by the method of characteristics program. In this way, each cell leads

to one equation for the determination of the ai and aij in the wave drag equation.

Since the method of characteristics is based on hyperbolic equations, the com-

plete flow field must be supersonic in order to apply the method. As mentioned above,

the local Mach number dropped to ". 17 near the fuselage canopy juncture of the F-4

at free-stream Mach 2.5 and zero angle of attack. Local subsonic regions would likely

occur' for some of the 25 variation configurations if the free-stream Mach number

should be lowered. Hence the wave drag coefficients for the F-4 fuselage and the

25 variations, each corresponding to a cell of the Latin Square, were calculated using

the Three-Dimensional Method of Characteristics program at Mach 2.5 and zero angle
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of attack. The calculatei wave drag coefficients (based on a wing area of 530 sq. ft.

ar1 tabulated in Table 3. The' mcan value ,4' the 25 coefficients is slightly higher than

the baseline coefficient.

c. Wave l)rag, Equation

In the wave drag equation, Eq. (1), two of the geometric variables, i.e., x and

x 6,1have only linear te rms while other variables have nonlin"r'.,r terms. In this way

there are only 17 coefficients a. and a.. while there are 25 equations available for their

evaluation. It therefore seems logical to include nonlinear terms of x1 and x 6 in the

equation as well. However, a preliminary numerical study suggested that the matrix

of coefficients of the system of 25 equations has a rank of 17 and consequently only 17

unknowns a. and a.. can be determined.

It is more convenient to express the wave drag equation in terms of the reduced

variables z. Since the reduced variables always take the levels 0, :1, :-2, the least

square fitting procedure once developed can be applied to any other values of the

geometric variables without modification. Also. since all reduced variables are of

the same order of magnitude, the coefficient of each term in the wave drag equation

is a measure of the contril)ution of that term to the total wave drag. In terms of the

reduced variables the original wave drag equation takes the form

6 5 5 (13)

CD b= + b~ z+ b..z.z.CDW bo i I bjzz

il j=i i=2

When the coefficients bi and bij were evaluated using the calculated wave drag co-

efficients of the 25 cells and the baseline in a least-square procedure, Eq. (13) was
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TABLE :. WAVE I)ItAG COEFFICIENTS CDW x 10"
(FOR I"ORWAJIt) "USE IA(GE 1 P TO 0Y% 230)

8.72259 5.97017 5."2492 )" 5.95256

7.b2580 7.25404 7.20510 5.4393o 5.76062

6.52684 6.67305 6.59154 6.66143 7,61059

8.21773 8.68830 6.43817 6.61810 5.93960

7.63046 8.22275 8.62522 7.24846 5.876-17

Baseline value C DW 6.69437 X 10-3

A23



Best Available Copy

used kur si m~c prel.imlin~i 'vinU.:ti' !nummnfim waive alrait L. .rltgrati(ns. O ne (A

the p!-cdict('(' Vt II HIj1. I"Itit 't'\ , ~ l(nt v.1itiz tilt- i i1a4 Ici't-h w~sSet tot that ul the

bais& ine and nott t lu'r van~ ~aa .'r. eaimp-. *st. t'he prtdictud erass soction at F. S.

,)0 -is shaaWnl ill H.-uare !I at d:1 a-t t ý. \. h txn xva .rc th r~ad:ar dish by a daiihed

line( mid the b~aselilna. era 4ss s.ttctiu;; !av : thia stihd lint- \\hilc it W%:is itit~rt'stifl to naotc

thait thle r1ltIl('re4U ranatW 1 0atit''tLX S:ItiSli A. it \:as sasjieetel th~at thle wPIIwg

trenld was tareaietet Sfincc :1 Irc~il *1il inl, th1e 'ha 4 X~ 1) , kuld re''tue the cross-

s&etitmnJ.1 areas :ill tilt- VtV!1 hetise t(' -)..0. Subseq'(uet,'t v:Iitiettiofl Xfs b

the Ilefiethal (,I ha rIcte ri st ics 0r1.ramsh xdthAt th~ i av d r-ia equa u1OD was under-

predlieungt' the wae irtý and tile, jarclieteal rena l it 1) -xas hicetrrect. iThis pwor pre-

ahietoinl was It ributed te the rthe r wxide iraraes (,fI the ý:a riait .vs. lIn order t( [ ceres

:he- jredithie n.aeeu racy, the the acletiated %%:we dr:aj.a,etiiet by the ye ri fie -

tion rm rs and the r c ,rreslum andng levels ,l thet reduced varia alvs icells :27, 2,s. :' il(!~

OIf T abi' -11 were used tot praaviih' three more e((u:itions tatir the aieternainwtion otf the

C' ) tieetts ).;1t1(i 1). .. wiheb :1 re I 1:a(l~e tuta'tIll T thlo. :). J.r: l ITalt.e 5 it is seen th~at in

gene ral b is an atWa rt ler a 4 mantmaitucke gr(eate'r than 1). wh ichl is ,nie otrder of mlatfl ittide

greate r thani 1) W U II:', i % ith thet imipr vud I). anmil 1) i w~as ngjnli usedl tat predict the

mnimum Ifl-li vae drag Cat i.'ratianwhent tile fuse1 l 11 .1 I('It. h~ was 5 wtt to at of thle base -

lint( andl the ratla anc can, -t 1-1 lilt w:a s inip'st se. The' resulti.'g C rilss sectioan ofI the mniti -

mum w~ave alr:ig c4tatti 4u ratt oil ;Iat I,. S. -)0 Slit mil Iln I i-41ure 9t bm a hit :avY Solid linle.

I 1i th the pred icted t rendl :aid t.a ye al':g e'lice iet 'were va'ril ,e IY (lite mel(thod of

c.h~mi acte ristie s tpr'g ran , ;i s prce m'atad ini thet it.a\t sectitait.

A fiew caaa.ea'Pt ha--s thi re0 aa' IN'atl ia'wr' 'l'at-a to, tilt, 'pIimi/imatlt nrm'edure usinig

I :itini Squa ra itnipli iit. This vi'a'nea't ri):ilh's. the( prirelietiai ' nitt vtlm olIl ''lemi"t tIrom

v\Twui'ria'aav in1 istraer I imiaapirao 'itsg pra'die iton. \ fi'r eatt It (r sever~al verirficaition

:I&.:,. Hops 4 Ocl te p~ra'riata'tt ''tt.t1ai~atn ri-4tiltiait ('fithiatais u&aart('mpottdilig tiit



B aASELINE

FICU. 9i. FUSEI.A;F: CIi(SS SECTIONS AT F. S. 50

A25

..- .0 -.



Best Available Copy

T.ABLE-I. AlI)IITIO)N.\L WAV'E I)UAX(CCoEFFIICIENT-S AN!)
C( RIRESPO NDI)N(, SETS O)FRIEDUCED \'ARL\ 3.S

IAt z L~ / 10

1/ -2/3 2 1,3 -0-4

2-1 2- 1 -2 7 269

29 -1. 3- 0 j2 j-21 1212
3') -1.t 17 -2 -2 0.. -2 5. -n343

31 -1.3- - .2 -. 9 0 ,32 4 4

32 -0.3 2 -20.4 ti3

*ccli 26G cor rsponsls to the huisel inc.
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TABLE 5. COEFFICIENTS OF WAVE DRAG EQUATION

b = 6.677233 X 10-3
0

VALUE OF b. X 104
I

1 1 2 3 4 5 6

b. X 10 -2.960518 2.010•88 0.035260 4.557457 -0.191512 2.6721b

VALUE OF b.. X 105

2 3 4 5

2 2.450636 -6.113357 7.665063 -0.727027

3 0.134838 -1.613047 -2.3gt471

4 5.565432 1.405971

5 4.226010
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the \erification rtus are included in the least-square procedure to, obtain improved

coefficients b. and b.. of the prediction equation. In general one or two applications
I ij

of this process should yield satisfactory results. The improved prediction for one set

of constraints may or may not lead to improvement for other sets of constraints. Ilow-

ever. the same process can be applied wherever needed.

An additional advantagc of this new concept is that nonlinear terms involving z

and z,; can also be taken into account. With each addition of an equation due to a verifi-

cation, the rank of the matrix of coefficients usually increases by one. That means one

more b.. of a nonlinear term involving rZ or z can be included. This process can be

repeated, if necessary, until all quadric terms arm accounted for.
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5. GEOMETRIC CONSTRAINTS AND WAVE DRAG REDUCTION

The wave drag equation can now be investigated to reduce the wave drag. In the

process of determining the minimum wave drag configuration. certain geometric

constraints, such as minimum cross-sectional area or maximum fuselage length,

must be satisfied. For each set of geometric constraints there exists a minimum wave

drag configuration. In this section the optimization procedure and some minimum

wave drag configurations are presented and discussed.

a. Optimization Procedure and Geometric Constraints

The simplest and surest way to find the minimum wave drag configuration

subject to a given set of geometric constraints is to use Eq. (13) to calculate the wave

drag coefficients for all allowable sets of levels of t'e variables and pick the set that

gives the least wave drag. The optimization procedure consists of the following
,

steps.

(1) Make a numerical search through the ranges of all six variables, using the

wave drag equation to calculate the wave drag coefficients for those sets of

levels that satisfy the constraints.

(2) Identify the set of levels of the variables that yields the least wave drag.

(3) Prepare body description Input data for the minimum %.ave drag configuration.

(4) Use the Three-Dimensional Method of Characteristics program to verify the

wave drag coefficient predicted by Eq. (1I).

The coefficients b. and b of Eq. J13) were obtained by applying a least square

procedure to fit the hypersurface represented by -:q. (13) over the 25 wave drag co-

efficients given in Table :1 and the first four coefficients of Table -t. The standard

deviation of the dt was about 1.02 x 10'4 which corresponds to an error of about 1.517,

The Numerical Search Procedure is presented in Appendix D.
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based on the mean wave drag coefficient. The maximum error of the fit over the 29 data

points was about 2.4""'(. Hence step 5 of the optimization procedure is necessary for

wave drag reduction of 4-5"; or less as predicted by Eq. (13).

Four types of geometric constraints are considered in order to satisfy most

design needs. These are:

(1) One or more of the six geometric variables take assigned values within the

ranges of variation. For instance, the length can be kept the same as that of

the baseline or the width can take 90f" of the baseline width.

(2) At one or more fuselage stations the configuration cross sections contain

geometric curves prescribed by tabulated data of widths versus elevations.

This type of constraint is useful for the placement of particular equip-

ment, for instance, the radome.

(3) At one or more fuse!age stations the configuration cross sections satisfy

minimum area requirements. The minimum area can be either a given area

or a certain percentage of the baseline cross-sectional area.

(4) The configuration satisfies a minimum volume requirement between two

given stations. A given volume or a certain percentage of the baseline

volume can be imposed.

b. Minimum Wave Drag Configurations

Several minimum wave drag configuratiGns subject to various geometric con-

Straints are presented to illustrate the application of this program. These configura-

tions were obtained by using the optimization procedure, and the predicted wave drag

coefficients were verified by the Three-Dimensional Method of Characteristics (33DMoC)

program in some cases.
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Within the ranges of variation of the six variables (when the only constraint was

implicitly imposed by the ranges under consideration), a 34. 8H reduction of the wave

drag coefficient was predicted by Eq. (13). The configuration corresponds to the

longest nose, as might be expected. \%%ien the length was set to be equal to that of

the baseline, a. 151'( reduction was predicted by the equation. The percentage reduc-

tion of the wave drag in relation to the increase of fuselage length is plotted in

Figure 10. It is seen that for every inch the fuselage is lengthened the wave drag

equation predicts a wave drag reduction slightly- over 1%. Since no constraint other

than the nose length was imposed, these minimum wave drag configurations have the

least cross-sectional areas attainable within the ranges of variation of the remaining

five geometric variables. Consequently these configurations cannot contain the radar

dish which is represented by a dashed circle at F. S. 50 in Figures 6 and 9. When

the fuselage length was set to that of the baseline and the radome constraint was

imposed, the wave drag equation predicted a 14,,'; reduction of the wave drag coefficient.

The cross section of this minimum wave drag configuration at F.S. 50 is shown by the

heavy solid line in Figure 9. It is seen that the lower fuselage cross section barely

contains the radar dish. This predicted trend that the wave drag decreases with the

shape factor b in the neighborhood of this minimum wave drag configuration was

verified by calculations using the Three-Dimensional Method of Characteristics

program. Calculation of the wave drag of this configuration also resulted in a wave

drag reduction of 12.617, which agrees fairly well with the 14' reduction predicted

by the wave drag equation, considering that the standard deviation of the least square

fit is 1. 57. The front view of this minimum wave drag configuration is presented in

Figure 11. which shows the contours of the cross sectiors from V. S. 20 to F.S. 230

at Intervals of 10. The front view of the baseline is presented In Figure 12 for com-

"parison. It is seen that this substantial reduction of the wave drag was accomplished

at the expense of reduced fuselage volume.
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Two important general constraints that strongly affect the wave drag are the

fuselage nose length and the fuselage volume. Therefore, the optimization procedure

was used to determine a number of minimum wave drag configurations for various

nose lengths and fuselage volumes. Since the horizontal displacement of the maximum

breadth line has an important effect on the fuselage volume, nonlinear terms of the

displacement a and the nose length I should be included in the wave drag equation for

accurate preaiction of the influence of these two geometric variables on the wave drag.

Equation (13) was first used to obtain two preliminary minimum wave drag configura-

tions which are tabulated in Table 4 as cells 31 and 32. The 30th cell in Table 4 cor-

responds to the minimum wave drag configuration subject to the radome constraint,

which was discussed in the preceding paragraph. These 32 cells provided 32 equa-

tions which allowed 23 terms (or 23 coefficients b , bij ) to be included in an improved

wave drag equation. All important nonlinear terms involving a and I were included.

The final improved wave drag equation, with six additional terms, is expanded

into the form:

CDW b +bZ +b2 Z2 +b3 Z3  + 4 Z4  b5Z5 +b Z

+bz2 2 2 2 2 2 (4
+ b11Zl2 + b2 2 Z22 + b3 3 Z23 ÷b 4 4 Z4 2 + b5 5 Z5 + b6 6 Z6  (14)

+b Z Z +b Z Z+b Z Z +b Z Z 4.b Z Z21 2Z1 32Z3 2 41Z4Z1 42 4 2 43Z4Z3

+ 52Z5Z2 + 53Z5Z3 +b 5 4 Z5 Z4 +b 62Z6Z2 +b 64Z6Z4

The coefficients of Eq. (14) are tabulated in Table 6. The optimization procedure using

the improved wave drag equation was then applied to determine the dependence of the

wave drag on the nose length and fuselage volume. The predicted percentage reduc-

tion of the wave drag coefficient is plotted against the increase of the fuselage nose

length in Figure 13 for various fuselage volumes (expressed as ,r of the baseline

volume). The two circles mark the calculated percentage reductions of the wave drag
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using the Three-Dimensional Method of Characteris-ics for the two Selected configura-

tions. Excellent agreement between the predicted vnd calculated wave drag reduction

is seen. When the nose length and fus:lage volume were set to the baseline values,

very little wave drag reduction was obtained within the variations of the six geometric

variables Is selected. This set of geometric variables and their ranges were chosen

to illustrate the wave drag reduction procedure in such generality that a wide range of

configurations similar to the baseline was covered and various illustrations could be

made. No specific effort was made to tailor the variables to the wave drag reduction

of the baseline configuration. The baseline wave drag could conceivably be further

reduced by some appropriately selected variables. Referring to Figure 13 again, some

rule-of-thumb percentage reductions of the wave drag can be observed. On the average

one inch increase in the fuselage length reduces the wave drag by slightly over one per-

cent while one percent decrease in the fuselage volume reduces the wave drag by about

3/4 percent.

The characteristics of the improved wave drag equation are shown in Figures 14

through 18. Each of th., figures shows the variations of the wave drag coefficient with

respect to two of the six geometric variables, where the remaining four are set equal

to the values of the baseline. Although it is difficult to plot the preser.t wave drag

function in a six-dimensional space, these figures at least enable one to isolate and

study the interacting characteristics between anv two of the six variables. The effects

of volume are also shown by plotting symbols on the curves to indicate various fuselage

volume limits. Since the geometric variable b is different for different fuselage sta-

tions, the parameter b used in these figures is actually the reduced variable which is

constant for each given configuration.

Figures 14a through 14e show the variations of the drag coefficient with respect

to the height of the lower deck h for families of f, b, a', a and f, respectively. Within

the ranges of variables studied, CDW decreases monotonically with h. Figure 14a
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Lildk ates that for a given jolu me, CI)W decreases w ith the length of ih fuselagte nose

C. Along values of constant vo lurne. Fig'res 141), 14c and l4d show that when each of

the respective variables (b, a' and a) interacts with h, there is a definite combina-

tion of variables which yields a configuration o"t minimum wave drag. For a volume

equal to the baseline value (Vol/'Vtjlll, 1), for example. Figure 1.4) shows that a

minimum occurs near b h 0 which are equal to the baseline values. The occurrence

of the minimum near the baseline configuration verifies the results obtained from the

numerical search where little reduction of wave drag from the baseline was obtained

within the variations of the selected geometric variables. Lines of constant a' and a

in Figures 14c and 14d respectively are nearly parallel, indicating that the interaction

between a' and h and the interaction between a and h are weak. This fact is also

revealed by examining the magnitude of the coefficients of the wave drag equation tab-

ulated in Table 6. The magnitude of these interaction terms, although included in the

• •formulation of the wave drag equation, is one order of magnitude smaller than the

raverage of the remaining interaction terms. Figures 15a and 15b show Lhe varia-

tions with respect to the length of the nose t for families of a' and f. respectively.

Again, the trend shows that C DW decreases with V, but miniria for given constant

volumes are not definitely shown. Figure 15b shows that the width of the fuselage

bottom flat section has little effect on the drag coefficient when the remaining four

variables are set equal to the values of the baseline. Figures 16a through 16d show

the variations with respect to the horizontal displacement of the maximum breadth line

a for families of i, b, a' and f, respectively. Here, the figures show that the drag

coefficient increases monotonically with a. Similar to the results shown in Figures

M-1a through 14le, for constant volume the drag coefficient decreases with f, and when

the volume is equal to that of the baseline, minima occur at or near the ba.seline. In

Figure 16b, for example, the minimum occurs at a -: 1.01 and ) t/6 approximately

for Vol/Vol 1. The curves in Figurcs ltla, lec, and 1fi( are parallel stince inter-
HI..

$ action terms 4etween each of the variables with a are not included in the present wave

7. A44
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drag equation. Similar to the results shown in Figure 15b, CI varies little with 1.
I)W

Figu, res 17a and 171b show the variations with respect to the vertical displacement o!f

the mxximum breadth line for families of b and f, respectivel". Here, a minimum

configuration for a given volume constraint cannot be determined graphically but a

minimum can he, located for each constant 1) or f. Figure 17a shows that the (Irag

coefficient increases with b, except when a' is INxlow the value of the baseline (a' - 1)

and when b is less than about -l/,3. Figure 17b shows that the drag coefficient in-

creases with f when a' is below the baseline value (a' = 1) and the trend reverses when

a' is above the baseline value. Figures lsa and 18b show the variation with respect to

the shape factor b for families of f and f, respectively. Again, Figure 18a shows that

the drag coefficient decreases with E. Similar to the characteristics of CDW vs. a'

shown in Figure 17b, the trend of the wave drag coefficient reverses from increasing

with f when b is below the baseline value Pi n 0) to decreasing with f above the baseline
I

value. Along the constant baseline volume line, Figure 18b shows a slight reduction

of the drag coefficient from the baseline when f 1.5 and b -. 25.

t

1Aix
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4 6. CONCLUDING REMARKS

The following remarks and conclusions can be made for Phase I of the wave

drag reduction program.

a. The optimization procedure using the Latin Square sampling technique and

the Three-Dimensional Metlod of Characteristics is useful and practical.

The procedure can be used for other optimization purposes besides wave

drag reduction.

b. The geometric variables"and their ranges of variation should be selected

carefully sinceethe'quality of the procedure and results are affected by the

selection. Some guidelines on selecting the variables and ranges are given

in this appendix, but experience is valuable.

c. A new concept has been introduced to enable the optimization procedure to

improve during the course of determining the optimum configuration. This

concept is particularly useful when the variables and their ranges were not

well chosen either because of inexperience or for the sake of compromise.

d. Within the ranges of variation of the six chosen geometric variables, the

following rule-of-thumb percentage reductions of the wave drag are ob-

tained for the F-4 fuselage. For every inch the nose is lengthened, the
I.

wave drag is reduced by slightly over one percent. For each percent the

fuselage volume is decreased, the wave drag Is reduced by about 3/4 percent.

5.A

f
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APPENDIX B

THE LATIN SQUARE METHOD

1-3
The Latin Square is a sampling method for designing an experiment.

AnNth order Latin Square is an arrangement of the N values of N + 1, or fewer,

variables (where N is a prime number) in such a way that the resulting surface

fitting process is efficiently performed. The method may be used for determining

an approximate equation for a function of a number of variables and hence for solv-

Ing extremum problems when the dependent variable is not known as an explicit

function of the independent variables.

The dependent variable, in this case wave drag coefficient CDW, is assumed to

be a quadric function of the independent variables x. (which are related to tht geometry

of the forward fuselage in this application),

6 5 5

!DW a0 + 6 a+ 1 i i i(1
=1 =

Equation (1) is written for a 5 x 5 Latin Square with six independent variables, i.e.

r N-5.

.For a given set of independent variables, xV, a new set of reduced variables,

say z1, may be determined such that the variables z take the values 0, *1, 4,

"2 * N-I
2--, according to the transformation equation

X +Xa

rThe .5 x .5 Latin Square arrangement in terms of the levels of the reduced

variables Is shown in Table 1. The arrangement may appear to be at once regular
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and random. It appears to be regular since all variables take orderly permutated

values. It appears to be random since there seems to be no bias in representing

all segments of the population. Regularity and randomness - therein lies the ef-

ficiency of the Latin Square sampling technique. It has been shown by Yates 3

that randomized blocks are more efficient than complete randomization and Latin

Squares are more efficient than randomized blocks. fie also found that on one set

of experiments about 2 1/2 times as many plots were needed with the randomized

blocks of 5 blocks as with the 5 x 5 Latin Squares to obtain the same accuracy (see

Reference 1, pp. 202-203). Careful examination of Table 1 revealed that in all

the cells having a given level of any reduced variable any one of the remaining

variables takes on all possible levels once and only once. For example, if we

select z1 = -2 to be the given level of the one reduced variable, then column

one contains all cells having z1  -2. It is seen that in column one each of the five

levels of any one of the remaining variables, say z2, appears once and only once.

Consequently, the number of all cells having a given level of any reduced variable

is five since there are five levels for each of the other variables to take through a

permutation process. Several consequences can be observed. Firstly, if we com-

pare any two cells we find that only one of the variables has the same level in both

cells, whereas all other variables have different levels. Secondly, for each re-

t duced variable there are five groups of five cells which satisfy the condition that in

each group this reduced variable takes one of the five levels. Thirdly, by a suitable

rearrangement of the cells any pair of the reduced variables can take the column and

row indices as their levels just as z1 and z(; (do as shown in Table 1. To do this,

arrange each group with the same level of one variable as a column and arrange the

columns In an ascending order with respect to the levels of this variable. Within

&,, each column (or group) arrange the cells In an ascending order with respect to the

ADM.



TABLE 1. A 5 x 5 LATIN SQUARE ARRANGEMENT

CELL CODE z2 z5

-2 -2 -1 -2 0 -2 1 -2 2 -2

1 0 2 1 -2 2 -1 -2 0 -1

-1 2 0 -2 1 -1 2 0 -2 1

-2 -1 -1 -l 0 -1 1 -1 2 -1

2 -1 -2 0 -1 1 0 2 1 -2

1 0 2 1 -2 2 -1 -2 0 -1

-2 0 -1 0 0 0 1 0 2 0

-2 -2 -1 -1 0 0 1 1 2 2

-2 -2 -1 -1 0 0 1 1 2 2

-2 1 -1 1 0 1 1 1 2 1

-. 2 0 -2 1 -1 2 0 -2 1

0 1 1 2 2 -2 -2 -1 -1 0

-2 2 -1 2 0 2 1 2 2

" 0 1 1 2 2 -2 -2 -1 .1 0

2 -1 -2 0 -11 0 2 1 -2

4 B
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levels of the other vari:able of the pAir. These properties show heuristicatllv the.

efficiency of the Latin Squire s-.mplin- technique which has been used for develop-

4-5
ing various optimal designs.

It may seemn intricaite to constcuct a Latin Square of this type, especially when

the size exceeds 5 x 5. The following steps, however, van be followed to construct

this type of Latin Square of any size "s long as the number of rows (or columns) is a.

prime number. The steps are best explained using Table 1 as an example.

(a) The variables z and Z,; are assigned levels equal to the column. and row

indices :as shown in Table I.

(b) For each of the diagonal cells where 4 z the level of z. is inc.reased

I
successively from i 1 to i (i by a level equal to that of z in a cyclic

order, in which the lowest level (i.e.. -2ý is considered one level higher

than the highest level (i.e., 2).

(c) The remaining levels of z., to z. iii each row are obtained by permutation

in an increasing cN-clic order using the diagonal cell.
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APPENDIX C

BODY DESCRIPTION METHOD

In this Appendix, the general body description method is described in some

detail and is illustrated by the body description of phase I. The technique of fitting

a conic-section curve is also given.

The fuselage is described by a number of generating lines, such ab the upper

profile, the lower profile, the maximum half-breadth line and generating ines for

the canopy. In the present body description procedure, each generating line is

divided into as many segments as necessary to allow each segment to be described

by a conic-section curve. At each cross section of the fuselage simple analytic

curves, e.g., the ellipse or cubic, connect any two adjacent generating lines to

form the contour of the cross section. The fuselage is thus described analytically

by simple low order curves.

The body description procedure detailed here was developed for use in con-

junction with the three-dimensional method of characteristics for calculating flow

fie!ds over smooth bodies. For a smooth body a unique normal to the surface must

exist every where, and this condition of a unique normal usually requires that the

curves and their slopes be continuous at the juncture between two contour curves

or two segments of a generating line.

1. DEFINITION OF GENERATING LINES

The fuselage is located in a right-handed coordinate system where the Y-axis

is aligned with the fuselage axis, the X-axis is spanwise and the Z-axis is up. A

schematic of a fuselage-canopy configuration is shown in Figure 1 and a typical cross

section in Figure 2.

In general, five generatinv lines, each being described by two functions of Y

(representing their vertical and horizontal projections Z and X , respectively, by a

general curve fit of conic sections) plus an additional three lines, each being

described by a single function of Y. serve to define the fuselage-canopy configuration

in phase I.
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Thcse are identified in Figures I and 2 as C ,
Q tpper profilc line
(a M\l•imum half-hreadth liae

(D Lower profile line
Q• Canopy crown line

() Canopy definition line

® Shape factor b, locating the 45* tangent line

® Upper fairing line

) ILower fairing line

where lines Q(E), 0, (), are required only, of course, in the region of the canopy.

The conic-section curves describing the lines take the form

(U)- Py + Qt [R.5Y .T]+ (1)

Details of the determination of the coefficients P, Q, R, S, T of the general conic

curves will be discussed in Section 4. Each conic-section segment must be con-

tinuous with the previous segment and, with very few exceptions, the slope must be

continuous at the junctures to satisfy the requirement of a unique normal to the sur-

face discussed above. Unlike others, line Q is not a true generating line. It is

actually a shape factor for the lower part of the fuselage, which expresses the dis-

tance to a tangent line as a function of Y. A lull discussion of the details is pre-

sented in Section 2(c).

Lines (S and (9 which fix, at each cross section, the extent of the fairifig cubic

between canopy .nd upper fuselage are defined by their projections in the YZ-plane,

i.e. Zf,01 and Zf 2(Y), only. Their projections Xf,(Y) and Xf 2(Y) are constrained

to lie on the ellipses defining the canopy and upper half of the fuselage, respectively,

ais deta'it.. in Section 2(d).

2. CONTOUR CURVES FORMING CROSS SECTIONS

As shown in Figure 2, for the most general case of a fuselage-canopy coitfiguratlon

with a windshield flat, the contour of the cross section begins with a straight line

representing the flat from the centerline to . The canopy contour froh (D to ®

is circular, but can be elliptic in general. The upper fuselage is represented by an

elliptic curve between (a and Q. The lower fuselage is represented by a general

C4



coMic-section curve from ® to . the bottom flat by a straight line from ® to the

centerline. The intersection between the canopy and the fuselage is faired by a cubic

from - ®0 to 0.

a. Canopy

The cross-sectional shape of the canopy is assumed to be circular. If there is no

winidshield flat, ( will lie on the centerline (Figure 3a) and the equation for the

canopy curve is given by

Z. 2 =#.-( 1 .0 (2)

If a windshield flat does exist, 0 moves off the centerline as shown in Figure 3b and

Equation (2), describing the canopy between ® and 0 leads to a slope discontinuity

at (D, the juncture between the circular arc and the windshield flat. Thus, a quarter-

ellipse is used to approximate the circular arc between ( and Q to give a slope of

dZ/dX = 0 at Q, providing slope continuity with the flat portion of the contour. TheI ~equation for this approximating ellipse is

a2

0 .N .1 (3)

The details of determining the point 0, given the locations of the canopy crown and

sill lines, exre presented in Section 3.

b. Upper Fuselage

The equation for the upper fuselae is

-- 4-- (), 0 (4)

indicating that, for the body description in its present form, X is constrained to be

zero for all Y.

Again it may be noted that (), in the region of the canopy, is fictitious and cannot be

obtained directly from three-view drawings. Details of determining Q, given the

location of the maximum half-breadth line (5 and the location of the canopy sill line,

may be found in Section 3.
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c. Lower Fuselage

Referring to Figure 2, the contour curve from () to Q) has a zero slope at Q) and

the slope approaches infinity at (a. As in aircraft lofting practice, the shape of this

contour curve is determined by specifying the distance from the origin to one of its

tangent lines that makes a 45* angle With the X-axis. Hence, this distance, which is

designated by b in the following derivation of the equation for the contour curve, may

be regarded as a shape factor for this curve.

The equation for the 45* tangent line is

z. x-r b

which, when the origin is translated to ( becomes

Z' M x' + (5)

where Z'= Z-Zm, X'= X- Xm and H Xm -Zm 2 b. In the new coordinate system, the

the general quadric equation, satisfying the conditions X'(Zl) X!, Z'( 0) 0,

(bX'/aZ')m = 0 and (OZ'/aX')1 = 0, reduces to

K(x z'-Z XT)+ x'(t- P) - 0 (6)

which represents a family of curves with K as a parameter. To determine K, Eq. (5)

is substituted into Eq. (6) to yield a quadratic equation of the form

AX' ÷8x' - 0(7)

The condition for Equation (6) to be a tangent line is that Equation (7) have a double

root; i.e. B~- 4AC - 0, which leads to

K . ...- (8)

Equation (6) with K given by Eq. (8), then represents the contour curve from 0) to (®).

The range of variation of this curve obtainable by applying this equation is illustrated

in Figure 4, where a family of conic section curvw is given for different values of b.

By increasing the distance b, the curve is seen to vary from almost a straight line

to a sharply bending curve approaching the two sides of a right triangle.
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, d. Fairing Curve

The intersection between the canopy and upper fuselage is faired by a cubic from G
to (D. The projections Zf,(Y) and Zf2 (Y) of lines ©D and ®D on the YZ-plane are given

by conic-section curves (such as Equation (1), where P, Q, R, S, T are input quantities).

The projections Xf,(Y) and Xf,(Y) on the XY-plane are obtained by solving Eqs. (3) and

(4), respectively.

XI,(Y') . (X.x-xC)[1-I(lfi"-oal

(9)

Xf,,Y) - X .,- ,Z.rnJ" , '/ I

The fairing curve matches the slopes of the ellipses at both end points fi and f2. The

slopes are defined by differentiation of Eqs. (3) and (4)

b • (Y) = zf- zg C !(4o
- - (10)Ox o Y) • .,, )( )_

___ ZIA IV

The cubic equation that satisfies the conditions of Eqs. (9) and (10) at point ft. can be

written

x .÷ P.11(Z-Zf) ÷ + Oxf, Z_.2j R.L.f& (11E
/' al Zf.-Zft" Zf- aft"

// .

The coefficients c and d are obtained by applying the conditions of Eqs. (9) and (10)

at point f2

,C• 3(X,,- x,,) Z( a,• l )(,,,- Zf),
C r (12)

" Id -z(Xt,-x.t)÷ (MI bxf-) (z,,- Zf,)

Equation (11) with c and d given by Eq. (12) is then the cubic equation for the fairing

curve from (E) to (D. The quantities Xfl, Xf2, OXf,/OZ, DXf2/OZ are given by Eqs. (9)

and (10), while XfI. Xc, X#. Zu, Zm, ZO, Zf1, and Zf2 are obtained from the genera-

ting lines input in the form of Equation (1).

•9
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3. D)ETERMINING GENERATING LINES AS FUNCTIONS OF Y

The g-enerating lines defined in Section 1 are determined primarily by utilizing top

and side view drawings as well as available cross-sectional views. The top and

side views arc used to obtain the variation of generating lines Q and 0) in the

A Z-plane and of line o in the XY-planc. The variation of line (3 in the YZ-plane

und of line ® in the XY-planc are obtained primarily by utilizing cross-sectional

views, as is the description of the shape parameter (D as a. function of Y.

From Figure 2 it can be seen tliat line Q, in the region of the canopy, and line ®
are, in effect fictitious lines whose description three-view drawings will not yield di-

rectly. The two iines are determined by assuming that the cross section of the canopy

is a circular arc and by constraining the intersection of this circular arc and the ellipse

defining the upper portion of the fuselage to lie on the canopy sill line, which in turn is

well defined from available three-view drawings.

In Figure 3, let Xi, Zi be the location of the canopy sill line for the cross section

shown. Utilizing the general equation for an ellipse with center at X0 , Zo and semi-

major and minor diameters a and b, respectively,

+ ( Z 20 ) 2 0
\b

one may determine Zu by finding b in the above equation for the ellipse through the

point Xi, Zi with known center X0 = 0, Zo - Zm and a X", yielding

Zu . 4 X. (Z Z"i)(13)

To determine Z# and X#, defining one end point of the quarter circle passing through

Zc, X€ and Zi, Xi whose center lies on X0 - 0. it is necessary to obtain Zo and r

for the circle satisfying the following conditions

x!* (+ -Z.) (14a)

* (LZ.) r (14b)

* Solving for Zo yields

1., W Zoo (15)

I . - -. -C IO-. . ... .

• •:,• -.4 • *- . . . ... .......-.



and using Equation (14b) to solve for r, gives

x. - r - + " Z' -Zo)1 (16)

When a windshield or canopy flat exists (i.e. Xc *•0, as shown in Figure 3b) a slope

dis-ontinuity results at Xc, Zc. Thus, for Xc * 0, the circular arc is replaced by

a quarter-ellipse, passing through Xi, Zi and one end point being XC, Zc with dX/dZ =0

to provide slope continuity.

This ellipse is intended to be an approximation to the circular arc determined previous-

ously. It is obtained by decreasing the canopy flat (i.e. Xc) by an arbitrary percen-

tage and solving for a new Z# and X# by an iterative procedure. utilizing Zo and X0

of Eqs. (15) and (16) as a first approximation, while constraining the product of the

two semi-axes of the ellipse to be equal to r2 of the initial circular arc.

Given a tabulation of Xc, Zc, XmI Zm, and Xi, Zi, values of Zu, Zo and Xo can be

determined for a number of fuselage stations; their fit by a sequence of conic-section

curves as a function of Y can then be accomplished in a straightforward manner by

the techniques described in the following section.
i

4. EVALUATION OF THE COEFFICIENTS FOR A CONIC SECTION

The general equation of the second degree, which represents a conic section, is

t2 bxtl c .a (17)

utilizing the coordinate system of Figure 5. The general equation appears to have six

constants, but in reality has only five arbitrary constants, since Equation (17) can be

divided by any of the constants, leaving an equation with five undetermined coefficients.

Therefore five independent conditions are sufficient to determine a conic.

In the following sections, two ways in which these five independent conditions arc

supplied will be treated. Section 4(a) deals with the conic determined by five points,

no three of which are collincar. Section 4(b) treats the conic determined by one point

and two point slopes. By a point slope it Is meant that a point is given and the slope

R •of the curve at the point is also given.

I.
"isCl

S... ... .. ..



2. a. Conic Determined bIy Five Points

Consider the problem of finding the equation of a conic through five given points, no

three of which are collinear. Let the points be 1, 2, 3, 4, 5 as shown in Figure 5a.

Then,

Y 0
y"r% x -h 2 - 0 (18)y~-mn~x -hi 3 = 0 1Is
Y-Mt x -h 4 - 0!

represent the equations of the lines connecting points 1-4, 1-2, 2-3, 3-4, respectively.

Then the equation

K (-' X -,HI )(Y -M 3x -h3) + (V-l 2x -h? )(U-rn4 X -h.4  0 .(19)

represents the family of conics through the points 1, 2, 3, 4. In this equation, K is a

parameter whose value can be determined from the fifth condition, which is that the

conic pass through point 5. (If point I is substituted into Equation (19), the result is

identically equal to zero since point 1 was used to evaluate the coefficients m, h, and

Sin 2 , h2 . The same argunent holds for points 2. 3, 4.)

-. S (Y"2zXs -h;)( y•- rx 5 -"h,,) (20)
(ys -m, xs - hf)( y- msxs - h3)

After expanding Equation (19) and collecting like powers, comparison with Equation (17)

shows that

a- K.!

b- -[K (m ,ms) + m2 #m 4

K 0. 3 Km *rn,3 m 4  (21)

d - -IK(h 1 .#i3 ) * hat #ih I
.4 a.. K(mths+. MshI) + mzh4 + Mn~A

'*Ir. f- Khlhs + hzh4

Rewriting Equation (17) in the form

,ay.4(b d) y +CX +e f -)

9 and solving, using the quadratic formula, yields

y -(bx+d) 1-[(bx+d)Z-4a(cx- ax+*0)l"
Za

t ' C12
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C13

*,.. .. . . . . . . . . . . . .. . . .. j - • •.- ......



X d..x.i Vx + b~ 1 2 bdx.d - (4acx1+4acY. +4af)1/
2AZa L 4a 4az

y - ~ ~ 2X +~ ±(Cx.~ i2 2~ ) 2(2
b . _x _d t. b'. 26 ÷,iX _ Y += ex* fl
2a 2a t 4.a' a

which can be recognized as Equation (1), with

P - - b/2a

Q - - dI2a

R - Pz- C/a (23)

S - -Pd/a - c/a

T - Q0- f/a

and the sign of the radical to be determined by evaluation.

b. Conic Determined by a Point and Two Point.Slopes

Now consider the problem of finding the coefficients of a conic determined by one point

and two point slopes. This establishes a curve that is tangent to a given line at a given

point, is tangent to another line at a given point and passes through a third given point.

This particular manner of determining a conic is especially suitable since it allows

for specification of slope continuityat the two end points of the conic-section segment,

wnile the great latitude afforded by the third point (control point) in fixing the shape

of the curve is utilized to good advantage in obtaining a good approximation to the data

to be fitted.

Compare Figures 5a and 5b. The points I and 2 of Figure 5a coincide in Figure 5b,

and the points 3 and 4 of Figure 5a coincide in Figure 5b. The line which joins points
F,

2, 3 and the line which joins points 4, 1 in Figure 5a therefore coincide in Figure 5b.
The lines 1-2, and 3-4 of Figure 5a become tangents to the conic in Figure 5b. Thus,

it can be seen that the special conditions applying to Equation (21) are mn i m3 and

h, h3, and the constants for the comic may be written as

a K m 4

C . KmI * mm. (24)

d 1 [2Kh ÷h 2 . h.1

a- 2Kmhi .Amzh, # m4 h2

S , Kh Jhh,

C14
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wh. ,'c the value of K is now given by

(Y5 -m 2x 5 -hz)(ya- n, xI- h4 ) (25)

(YS x MA, )

The coefficients P, Q, R, S, T for the conic in form of Equation (1) may now be

cowli)utod by using Eq. (25) and Eq. (24) in Eq. (23).

c. Special Forms

TN%,, special forms of Equation (1) are worth noting due to their frequent utilization

in t uis body description procedure.

A straight line has the coefficients

Q - conAnt

R,, *,T O- 0

A circle of radius r., with its center at x., y., has as its coefficients

P 0

Q

R - -A

T r*- -Co

C15



APPENDIX D

NUMERICAL SEARCIH FOR MINIMUM PROCEDURE

The numerical search procedure to determine the miniinum wave drag configura-

tion involves the computation of wave drag coefficients of a large number of discrete

points blanketing the entire region in the six-dimensional space hounded by the given

ranges of variables. The point which has the lease wave drag is taken to be the mini-

mum wave drag configuration. The accuracy of locating the minimum is th, :'efore

dependent on the resoltuion of the numerical network. Accurate location of the mini-

mum can be obtained efficiently by a search-by-steps technique where the search is

first conducted using coarser grids to determine an approximate location, and ther

repeated in a smaller region centered around the location of the previously obtained

minimum. This process cao be repeated as many times as needed to obtain the

desired accuracy. The major advantage of such a numerical search procedure is that

the given constraints can be satisfied easily by merely rejecting points which violate

the constraints during the search.

The searching procedure is summarized as follows:

1. Select the ranges of search by specifying the lower and upper limits of

each of the six reduced variables:

(ZL) , (z) J ,

"2. Select the resolution for each of the variables by specifying the numlers

of node points N (j -- 1,6) of that variable. The rcsoi•tit~w is given by

Z

resolution --
N .1

Dl
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tThe tot:al nuihtlr ol pints for v:10i1 •ea:rch cYcle is equ:il to the product of

t Nil i.V.

S~6
total point.-;

j= 1

lFt" ex:ianpile, if 10 point.s :irc s'petifitd for :1 variables, the total number of points

:.1 ('Ciipute th, . six t:il ,es of V:;rial' ls:

i 1, N.

(zi)i .z 1) (ZN ) j . 1, 6
I,(z L); N~)

4. At every possible combination of the six variables,

evaluate the given constraints (e. g. the volume). If the combination satisfies the

constraint, compute the wave draag coefficient using the wave drag equation.

5. Determine the set of variables z'. which yields the least wave drag co-

efficient. The configuration defined hr z' z 2, .... 2 z', is the mini-

mum wave drag configuration unless one wishes to impr6ve the accuracy by

repeating the search.

6. If the search is to Ix, repeated, select the new ranges ofithe six variables

," by redefining the lower and upper limits as,

(zi) z (zr) - Z. j .

'4 where 4 are arbitrary increments of zjseiected to definei a smaller

region of search. In situ:itions where zL) or u.) de.fned by the above

ID
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relations are Ixeond the ranges of consideration, they are. then set equal

to the minimum " L" maximum accordingly.

7. Repeat the procedure from step (2) until the desired accuracy is obtained.

D
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APPENDIX E

DEMONSTRATION OF LATIN SQUARE PROCEDURE

An IR&D program has been carried out to demonstrate the Latin Square

optimization procedure using the von Karman ogive as the baseline configuration.

The area distribution of the slender bodies, which yield the ogive, can be expressed

S' aS

S(a) 4 -B ( s e2)+

* a~ sin(h1)9 -- sin(n-l)f

* where I is the length, B the base area and 9 r represents the nose, 9 0 the

base; the an's are the Fourier coefficients of the lintal source distribution strength.

The wave drag is given by

*D W 7r2 16B 2  2 +32 + 24+5a

lp* U2 14 T2f4 2a 2 + 3a 3  414 5a5 i

The Latin Square procedure is. demonstrated in the following way: Select a set

of geometric variables and their ranges of variation. This selection defines a

family of configurations, over which the optimization procedure Is then applied

to yield the configuration with the least wave drag. If the procedure works, the

minimum wave drag configuration will be a good approximation to the von Karman

ogive obtained analytically.

El
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For the 5x5 Latin Square, the six variables and their ranges ace:

x 1 .962 1 f - 1.038

x2 .055 i B ; .079

x3 -. 02 $ a2 _ .02

x4 -. 01 1_ a 5 .01

x5 -. 02 1 a4 g .02

x6 -. 02 L a. 9 .02

The family of 25 configurations defined by these variables is shown in Figures 1

and 2, where the dotted lines represent the base line at I = 1.0 and B = 0.067,

which were selected to reflect the variables used for the F-4 during phase I study.

The demonstration of the Latin Square procedure and our finds are sum-

marized below. A straightforward application of the original Latin Square pro-

cedure did not yield the correct minimum wave drag body. Under the constraint

of given length (I= 1.0) and base (B = 0.067), the original procedure predicted

the minimum wave drag body to correspond to a2 = -. 02, a 3  .02, a 4  -. 002

and a5  -. 02 while for the von Karman ogive all the a's vanish a 2 = a.3  a 4 =a 5  0.

" Of these four variables only a4 is barely acceptable, considering the numerical

accuracy. However, when the iterative type improvement, which consists of

"adding more nonlinear terms in the wave drag function (see Reference 1 of the

main tect), was applied, the optimization procedure turned out successfully.

Indeed, when only one case of a2 = 0, a 3 & 0.2, a4 = 0 and a5  0 was added to

yield a square term for a3 in the wave drag function, the improved procedure

predicted the minimum wave drag body to correspond to a2 = -. 00026, a3  -. 00021,

a 4 z 00006, a5  . 00031, which is the von Karman ogive recovered numerically.
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Similar results were obtained for different constraints of I and B.

In sum,- the improved Latin Square optimization procedure has numerically

predicted the minimum wave drag body that was obtained analytically.
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